Năng lượng chứa trong từ trường Từ_trường

Năng lượng cần thiết để sinh ra từ trường chống lại điện trường sinh ra do từ trường biến đổi và cũng như để làm từ hóa bất kỳ vật liệu nào đặt trong từ trường. Đối với vật liệu không phân tán (non-dispersive materials hay là vật liệu rắn, chắc đặc) dạng năng lượng này được giải phóng khi từ trường biến mất hoặc bị phá hủy do vậy ta có thể mô hình nó như là được tích trữ trong từ trường.

Vật liệu tuyến tính, không phân tán (linear, non-dispersive, materials) (sao cho B = μH với μ là độ từ thẩm), mật độ năng lượng bằng:

u = B ⋅ B 2 μ = μ H ⋅ H 2 = B ⋅ H 2 . {\displaystyle u={\frac {\mathbf {B} \cdot \mathbf {B} }{2\mu }}={\frac {\mu \mathbf {H} \cdot \mathbf {H} }{2}}={\frac {\mathbf {B} \cdot \mathbf {H} }{2}}.}

Nếu không có vật liệu từ nào xung quanh thì μ bằng μ0. Phương trình trên không áp dụng cho vật liệu phi tuyến; và cần một biểu thức tổng quát hơn để mô tả.

Tổng quát, vi phân công trên một đơn vị thể tích δW làm thay đổi vi phân từ trường δB là:

δ W = H ⋅ δ B . {\displaystyle \delta W=\mathbf {H} \cdot \delta \mathbf {B} .}

Một lần nữa mối liên hệ giữa HB trong phương trình này dùng để xác định công cần thiết để đưa vật liệu đạt tới trạng thái từ nhất định. Đối với vật liệu từ trễ như sắt từ và siêu dẫn, công cần thiết còn phụ thuộc vào cách từ trường ngoài sinh ra. Tuy vậy, đối với vật liệu tuyến tính không phân tán, phương trình tổng quát ở trên cho phép tính ra mật độ năng lượng từ trường.

Tài liệu tham khảo

WikiPedia: Từ_trường http://theory.uwinnipeg.ca/physics/mag/node2.html#... http://my.execpc.com/~rhoadley/magfield.htm http://www.first4magnets.com/ekmps/shops/trainer27... http://books.google.com/?id=3AFo_yxBkD0C&pg=PA169 http://books.google.com/?id=9RvNuIDh0qMC&pg=PA27 http://books.google.com/?id=AZVfuxXF2GsC&printsec=... http://books.google.com/?id=GYsphnFwUuUC&pg=PA69 http://books.google.com/?id=JStYf6WlXpgC&pg=PA381 http://books.google.com/?id=NiEDAAAAMBAJ&pg=PA96&d... http://books.google.com/?id=Ovo8AAAAIAAJ&pg=PA110